Inverse Scattering Transform and Nonlinear Evolution Equations

Mark J. Ablowitz
Department of Applied Mathematics
University of Colorado, Boulder
October 2015

Outline

- I. Introduction, background
- II. Compatible linear systems, Lax pairs: $1+1 \mathrm{~d}$
- II.a Method (AKNS) to find linear compatible pairs: 2×2 systems, associated with nonlinear evolution eq - often with suitable symmetry-in physcially significant cases
Examples: Korteweg-deVries (KdV), NLS (nonlinear Schrödinger), mKdV (modifed KdV), sine-Gordon (SG), ...
- II.b New symmetry: integrable nonlocal NLS (2013)
- II.c Compatibility Schrödinger scattering problem
- II.d Classes of NL Evolution equations solvable by IST
- Il.e Remarks on $N \times N$ systems and extensions to $2+1 \mathrm{~d}$
- II.f Remarks on: compatible systems for discrete eq

Outline-con't

- III. Inverse Scattering Transform (IST): KdV

Motivation: Fourier transforms and solution of linear PDEs
KdV is related to linear Schrödinger scattering problem

- IIla. Direct scattering-analytic eigenfunctions, scattering data
- IIIb. Inverse scattering: Riemann-Hilbert (RH) problems
- IIIc. Time dependence of scattering data
- IIId. Summary: Solution of KdV by IST
- IIIe. Pure Solitons -'reflectionless potentials'
- IIIf. Conserved quantities
- IIIg. Inverse Problem: Connection to Gel'fand-Levitan-Marchenko (GLM) eq

Outline-con't

- IV. Inverse Scattering Transform (IST): NLS, mKdV, SG,... These eq are related to 2×2 scattering problem with two potentials: q, r
- IVa. Direct scattering-analytic eigenfunctions, scattering data, symmetry
- IVb. Inverse scattering: Riemann-Hilbert problems
- IVc. Time dependence of scattering data
- IVd. Symmetry and IST solution of: NLS, mKdV, SG

New symmetry - nonlocal NLS eq

- IVe. Pure Solitons -'reflectionless potentials'
- IVf. Conserved quantities
- IVg. Inverse Problem: Connection to Gel'fand-Levitan-Marchenko eq
- Additional remarks and conclusions

I. Introduction-Background

- 1837-British Association for the Advancement of Science (BAAS) sets up a "Committee on Waves"; one of two members was J. S. Russell (Naval Scientist).
- 1837, 1840, 1844 (Russell's major effort): "Report on Waves" to the BAAS-describes a remarkable discovery

Russell-Wave of Translation

- Russell observed a localized wave: "rounded smooth...well-defined heap of water"
- Called it the "Great Wave of Translation" - later known as the solitary wave
- "Such, in the month of August 1834 , was my first chance interview with that singular and beautiful phenomenon..."

Russell: to Mathematicians, Airy

Russell: "... it now remained for the mathematician to predict the discovery after it had happened..."
Leading British fluid dynamics researchers doubted the importance of Russell's solitary wave. G. Airy (below): wave was linear

Stokes

1847-G. Stokes: Stokes worked with nonlinear water wave equations and found a traveling periodic wave where the speed depends on amplitude (ambivalent w / r Russell). Stokes made many other critical contributions to fluid dynamics -"Navier-Stokes equations"

Boussinesq, Korteweg-deVries

- 1871-77 - J. Boussinesq (left): new nonlinear eqs. and solitary wave solution for shallow water waves
- 1895 -D. Korteweg (right) \& G. deVries: also shallow water waves ("KdV" eq.); NL periodic sol'n: "cnoidal" wave; limit case: the solitary wave (also see E. deJager '06: comparison Boussinesq - KdV)
- Russell's work was (finally) confirmed

KdV Equation -1895

KdV eq - 1895

$$
\frac{1}{\sqrt{g h}} \eta_{t}+\eta_{x}+\frac{3}{2 h} \eta \eta_{x}+\frac{h^{2}}{2}\left(\frac{1}{3}-\hat{T}\right) \eta_{x x x}=0
$$

where $\eta(x, t)$ is wave elevation above mean height $h ; g$ is gravity and \hat{T} is normalized surface tension $\left(\hat{T}=\frac{T}{\rho g h^{2}}\right)$

KdV Eq.-con't

- nondimensional KdV eq.

$$
u_{t}+6 u u_{x}+u_{x x x}=0
$$

- solitary wave:

$$
u=2 \kappa^{2} \operatorname{sech}^{2} \kappa\left(x-4 \kappa^{2} t-x_{0}\right), \kappa, x_{0} \text { const }
$$

Solitary wave video

Click for solitary wave video

KdV -Modern Times

- 1895-1960 - Korteweg \& deVries (KdV): water waves...
- 1960's - mathematicians developed approx methods to find reduced eq governing physical systems; KdV is an important "universal" eq
- 1960s M. Kruskal: 'FPU' (Fermi-Pasta-Ulam, 1955) problem

with force law: $F(\Delta)=-k\left(\Delta+\alpha \Delta^{2}\right), \alpha$ const; M.K. finds KdV eq in the continuum limit

KdV -Modern Times-con't

- 1965 -computation on KdV eq.

$$
u_{t}+u u_{x}+\delta^{2} u_{x x x}=0
$$

N. Zabusky, M. Kruskal introduced the term Solitons

Figure: Calculations of the KdV Eq. with $\delta^{2} \approx 0.02$ - from numerical calculations of ZK 1965

KdV -Modern Times-con't

Kruskal and Miura study cons laws of KdV eq \& modified KdV ($m K d V$) eq. Below $K d V$ eq. left; $m K d V$ eq right:

$$
u_{t}+6 u u_{x}+u_{x x x}=0, \quad v_{t}-6 v^{2} v_{x}+v_{x x x}=0
$$

Miura finds a transformation between KdV and mKdV :

$$
u=-\left(v_{x}+v^{2}\right)
$$

KdV leads the way to IST

- Miura Transf leads to scattering problem and linearization of $\mathrm{KdV}: v=\phi_{x} / \phi$

$$
\phi_{x x}+\left(k^{2}+u(x, t)\right) \phi=0, \quad \phi_{t}=M \phi
$$

k constant

- 1967 - Method to find solution of KdV: Gardner, Greene, Kruskal, Miura
- 1970's-present - KdV developments led to new methods \& results in math physics
- Termed Inverse Scattering Transform (IST)-find solitons as special solutions

KdV Solitary Wave -Soliton

Normalized equation:

$$
u_{t}+6 u u_{x}+u_{x x x}=0
$$

Soliton: $\quad u_{s}(x, t)=2 \kappa^{2} \operatorname{sech}^{2} \kappa\left(x-4 \kappa^{2} t-x_{0}\right)$
One eigenvalue: $u_{\max }=2 \kappa^{2}$; speed $=2 u_{\max }, x_{0}=0$

KdV -Two Soliton Interaction

KdV eq. with two eigenvalues: two solitons

Solitons: speed and amplitude preserved upon interaction

NLS is Integrable

Another important integrable eq. is the nonlinear Schrödinger eq. (NLS; Zakharov, Shabat, 1971)

$$
i q_{t}=q_{x x}+V q ; V= \pm 2 q q^{*}(x, t), *=c c
$$

Related to

$$
\begin{gathered}
\phi_{x}=\left(\begin{array}{cc}
-i k & q(x, t) \\
r(x, t) & i k
\end{array}\right) \phi \text { with } r(x, t)=\mp q^{*}(x, t) \\
\phi_{t}=M \phi, \quad M=M[q, r], 2 x 2
\end{gathered}
$$

k is constant

'Nonlocal NLS' is Integrable

A 'nonlocal NLS' eq is integrable:

$$
i q_{t}=q_{x x}+V q ; \quad V= \pm 2 q(x, t) q^{*}(-x, t)
$$

Nonlocal NLS is related to

$$
\phi_{x}=\left(\begin{array}{lc}
-i k & q(x, t) \\
r(x, t) & i k
\end{array}\right) \phi \text { with } r(x, t)=\mp q^{*}(-x, t)
$$

k is constant; MJA, Z. Musslimani, 2013

II. Compatible linear systems, Lax Pairs $1+1 \mathrm{~d}$

Lax (1968) considered two operators; i.e. operator 'pair'- in general:

$$
\begin{aligned}
\mathcal{L} v & =\lambda v \\
v_{t} & =\mathcal{M} v
\end{aligned}
$$

For KdV

$$
\begin{aligned}
\mathcal{L} & =\partial_{x}^{2}+u \\
\mathcal{M} & =u_{x}+\gamma-(2 u+4 \lambda) \partial_{x}=\gamma-3 u_{x}-6 u \frac{\partial}{\partial x}-4 \frac{\partial^{3}}{\partial x^{3}}
\end{aligned}
$$

where γ is const and λ is a spectral parameter with $\lambda_{t}=0$ 'isospectral flow'

Lax Pairs -con't

Take $\partial / \partial t$ of $\mathcal{L} v=\lambda v$:

$$
\mathcal{L}_{t} v+\mathcal{L} v_{t}=\lambda_{t} v+\lambda v_{t}
$$

Use $v_{t}=\mathcal{M} v$

$$
\begin{aligned}
\mathcal{L}_{t} v+\mathcal{L} \mathcal{M} v & =\lambda_{t} v+\lambda \mathcal{M} v=\lambda_{t} v+\mathcal{M} \lambda v \\
& =\lambda_{t} v+\mathcal{M} \mathcal{L} v=> \\
{\left[\mathcal{L}_{t}+\right.} & (\mathcal{L} \mathcal{M}-\mathcal{M} \mathcal{L})] v=\lambda_{t} v
\end{aligned}
$$

Hence to find nontrivial ef $v(x, t)$

$$
\mathcal{L}_{t}+[\mathcal{L}, \mathcal{M}]=0 \quad(L a) \text { where }[\mathcal{L}, \mathcal{M}]=\mathcal{L} \mathcal{M}-\mathcal{M} \mathcal{L}
$$

if and only if $\lambda_{t}=0 ;(L a)$ called Lax eq

Compatible Matrix Systems

Extension:

$$
v_{x}=\mathbf{X} v, \quad v_{t}=\mathbf{T} v
$$

where v is an $n-d$ vector and \mathbf{X} and \mathbf{T} are $n \times n$ matrices:
$\mathbf{X}=\mathbf{X}[\mathbf{u} ; \lambda], \mathbf{T}=\mathbf{T}[\mathbf{u} ; \lambda]$
Require compatibility: $v_{x t}=v_{t x}$, then

$$
\mathbf{X}_{t}-\mathbf{T}_{x}+[\mathbf{X}, \mathbf{T}]=0
$$

and require e-value dependence to be isospectral. Above eq more general than Lax pair: allows more gen'l e-value dependence than $\mathcal{L} v=\lambda v$

2×2 Matrix Systems

Soon after KdV developments and Lax' ideas, Zakarov-Shabat (1971) found compatible pair and method of sol'n of NLS. AKNS (1973) generalized this to class of eq including NLS, mKdV, SG etc with following.
E-value prob (RHS: X):

$$
\begin{aligned}
& v_{1, x}=-i k v_{1}+q(x, t) v_{2} \\
& v_{2, x}=i k v_{2}+r(x, t) v_{1}
\end{aligned}
$$

Time dependence (RHS: T)

$$
\begin{aligned}
& v_{1, t}=A v_{1}+B v_{2} \\
& v_{2, t}=C v_{1}+D v_{2}
\end{aligned}
$$

where A, B, C and D functionals of $q(x, t), r(x, t)$ and k

2×2 Matrix Systems-Special Cases

Note when when $r(x, t)=-1$, then from

$$
\begin{aligned}
& v_{1, x}=-i k v_{1}+q(x, t) v_{2} \\
& v_{2, x}=i k v_{2}+r(x, t) v_{1}=i k v_{2}-v_{1}
\end{aligned}
$$

we can solve for v_{1} in terms of v_{2}; find v_{2} satisfies:

$$
v_{2, x x}+\left(k^{2}+q\right) v_{2}=0
$$

i.e the time independent Schrödinger e-value prob-which is related to KdV

Method below yields physically interesting NL evolution eq when $r=-1, r=\mp q^{*}, r=\mp q, q$ real

2×2 Matrix Systems-con't

Consider the 2×2 compatible matrix system

$$
\begin{gathered}
v_{1, x}=-i k v_{1}+q(x, t) v_{2} \\
v_{2, x}=i k v_{2}+r(x, t) v_{1} \\
v_{1, t}=A v_{1}+B v_{2} \\
v_{2, t}=C v_{1}+D v_{2}
\end{gathered}
$$

Namely require $v_{j, x t}=v_{j, t x}, j=1,2$, and $d k / d t=0$: isospectral flow

This yields two eq of form: $\Gamma_{j}^{1} v_{1}+\Gamma_{j}^{2} v_{2}=0, j=1,2$; we take $\Gamma_{j}^{1}=\Gamma_{j}^{2}=0$

2×2 Matrix Systems-con't

This leads to $D=-A$ and three eq for A, B, C

$$
\begin{aligned}
A_{x} & =q C-r B \\
B_{x}+2 i k B & =q_{t}-2 A q \\
C_{x}-2 i k C & =r_{t}+2 A r
\end{aligned}
$$

Note the e-value dependence k in coef of B, C 2nd 3 rd eq Look for sol'ns A, B, C in finite powers of k

$$
A=\sum_{j=0}^{n} A_{j} k^{j}, \quad B=\sum_{j=0}^{n} B_{j} k^{j}, \quad C=\sum_{j=0}^{n} C_{j} k^{j}
$$

Substitution yields eq which determine A_{j}, B_{j}, C_{j} and leave two additional constraints: NL evolution eq

2×2 Matrix Systems-Example

$$
\begin{aligned}
A_{x} & =q C-r B \\
B_{x}+2 i k B & =q_{t}-2 A q \\
C_{x}-2 i k C & =r_{t}+2 A r
\end{aligned}
$$

Example: $n=2, A=A_{2} k^{2}+A_{1} k+A_{0}$ etc. The coefficients of k^{3} give $B_{2}=C_{2}=0$; at order k^{2}, we obtain $A_{2}=a=$ const etc.
Find after some algebra: coupled NL evoln eq (constarint on sol'ns of A, B, C eq)

$$
\begin{aligned}
-\frac{1}{2} a q_{x x} & =q_{t}-a q^{2} r \\
\frac{1}{2} a r_{x x} & =r_{t}+a q r^{2}
\end{aligned}
$$

2×2 Matrix Systems-NLS

If $r=\mp q^{*}$ and $a=2 i$, then find:

$$
i q_{t}=q_{x x} \pm 2 q^{2} q^{*} \quad \text { NLS }
$$

Both focusing (+) and defocusing (-) cases inlcuded Summary $n=2$ with $r=\mp q^{*}$ find

$$
\begin{aligned}
& A=2 i k^{2} \mp i q q^{*} \\
& B=2 q k+i q_{x} \\
& C= \pm 2 q^{*} k \mp i q_{x}^{*}
\end{aligned}
$$

provided that $q(x, t)$ satisfies the NLS eq and recall: $d k / d t=0$: isospectral flow

2×2 Matrix Systems-con't

$n=3, A=A_{3} k^{3}+A_{2} k^{2}+A_{1} k+A_{0}$ etc, find:

$$
\begin{aligned}
& A=a_{3} k^{3}+a_{2} k^{2}+\frac{1}{2}\left(a_{3} q r+a_{1}\right) k+\frac{a_{2}}{2} q r-\frac{i a_{3}}{4}\left(q r_{x}-r q_{x}\right)+a_{0} \\
& B=i a_{3} q k^{2}+\left(i a_{2} q-\frac{a-3}{2} q_{x}\right) k+\left[i a_{1} q-\frac{a_{2}}{2} q_{x}+\frac{i a_{3}}{4}\left(2 q^{2} r-q_{x x}\right)\right] \\
& C=i a_{3} r k^{2}+\left(i a_{2} r+\frac{a_{3}}{2} r_{x}\right) k+\left[i a_{1} r+\frac{a_{2}}{2} r_{x}+\frac{i a_{3}}{4}\left(2 r^{2} q-r_{x x}\right)\right]
\end{aligned}
$$

$a_{j}, j=0,1,2,3$ are arb const. with 2 NL evoln eq (constraints)

$$
\begin{array}{r}
q_{t}+\frac{i a_{3}}{4}\left(q_{x x x}-6 q r q_{x}\right)+\frac{a_{2}}{2}\left(q_{x x}-2 q^{2} r\right)-i a_{1} q_{x}-2 a_{0} q=0 \\
r_{t}+\frac{i a_{3}}{4}\left(r_{x x x}-6 q r r_{x}\right)-\frac{a_{2}}{2}\left(r_{x x}-2 q r^{2}\right)-i a_{1} r_{x}+2 a_{0} r=0
\end{array}
$$

$2 \times 2-K d V, m K d V$

With $a_{0}=a_{1}=a_{2}=0, a_{3}=-4 i$ and $r=-1$, obtain the KdV eq:

$$
q_{t}+6 q q_{x}+q_{x x x}=0
$$

If $a_{0}=a_{1}=a_{2}=0, a_{3}=-4 i$ and $r=\mp q$, real, obtain the mKdV eq

$$
q_{t} \pm 6 q^{2} q_{x}+q_{x x x}=0
$$

Have already seen: if $a_{0}=a_{1}=a_{3}=0, a_{2}=-2 i$ and $r=\mp q^{*}$, then we obtain the NLS eq

$$
i q_{t}=q_{x x} \pm 2 q^{2} q^{*}
$$

2×2-Sine-Gordon, Sinh-Gordon Eq

Another ex. $n=-1$; take:
$A=\frac{a(x, t)}{k}, \quad B=\frac{b(x, t)}{k}, \quad C=\frac{c(x, t)}{k}$
Find eq for a, b, c; special cases are

$$
\text { (i): } a=\frac{i}{4} \cos u, \quad b=-c=\frac{i}{4} \sin u, \quad q=-r=-\frac{1}{2} u_{x}
$$

and u satisfies the Sine-Gordon eq:

$$
u_{x t}=\sin u
$$

(ii): $\quad a=\frac{i}{4} \cosh u, \quad b=-c=-\frac{i}{4} \sinh u, \quad q=r=\frac{1}{2} u_{x}$ and u satisfies the Sinh-Gordon eq

$$
u_{x t}=\sinh u
$$

$2 \times 2-$ New Symmetry

If $r(x, t)=\mp q^{*}(-x, t)$ then for quadratic expansion in k find

$$
i q_{t}=q_{x x} \pm 2 q^{2}(x, t) q^{*}(-x, t) \quad \text { Nonlocal NLS }
$$

or written as

$$
i q_{t}=q_{x x} \pm V[q] q(x, t) \quad V[q]=q(x, t) q^{*}(-x, t)
$$

Schrödinger Eigenvalue Problem

Originally KdV eq was related to the time independent Schrödinger e-value prob
Same method that works for 2×2 problem (when $r=-1$) also can be used directly
Compatible system:

$$
\begin{gathered}
v_{x x}+(\lambda+q) v=0 \\
v_{t}=A v+B v_{x}
\end{gathered}
$$

Compatibility: $\left(v_{x x}\right)_{t}=\left(v_{t}\right)_{x x}$ yields eq for A, B (coef of v and $\left.v_{x}\right)$:

$$
\begin{gathered}
A_{x x}-2 B_{x}(\lambda+q)-B q_{x}+q_{t}=0 \\
B_{x x}+2 A_{x}=0
\end{gathered}
$$

Schrödinger Eigenvalue Problem-con't

To find A, B let:

$$
A=\sum_{j=0}^{n} A_{j} \lambda^{j}, \quad B=\sum_{j=0}^{n} B_{j} \lambda^{j}
$$

Substituting above into A, B eq and equating powers of λ yields $A_{j}, B_{j}, \mathrm{j}=1,2 \ldots \mathrm{n}$, and a constraint which is the NL evol eq.
Ex. $n=1$ if take: $A_{1}=0, A_{0}=q_{x}, \quad B_{1}=4, B_{0}=-2 q$ find KdV eq.

$$
q_{t}+6 q q_{x}+q_{x x x}=0
$$

2×2-General Class of NL Eq

A, B, C eq are linear eq that be solved for decaying q, r subject to constraint; find:

$$
\binom{r}{-q}_{t}+2 A_{\infty}(L)\binom{r}{q}=0
$$

where $A_{\infty}(k)=\lim _{|x| \rightarrow \infty} A(x, t, k) ; A_{\infty}(k)$ can be the ratio of two entire functions; L is

$$
L=\frac{1}{2 i}\left(\begin{array}{cc}
\partial_{x}-2 r\left(I_{-} q\right) & 2 r\left(I_{-} r\right) \\
-2 q\left(I_{-} q\right) & -\partial_{x}+2 q\left(I_{-} r\right)
\end{array}\right)
$$

where $\partial_{x} \equiv \partial / \partial x$ and $\left(I_{-} f\right)(x) \equiv \int_{-\infty}^{x} f(y) d y$

2×2-General Class of NL Eq-con't

Ex. $A_{\infty}(k)=2 i k^{2}$ find:

$$
\binom{r}{-q}_{t}=-4 i L^{2}\binom{r}{q}=-2 L\binom{r_{x}}{q_{x}}=i\binom{r_{x x}-2 r^{2} q}{q_{x x}-2 q^{2} r}
$$

With $r=\mp q^{*}$ we have the NLS eq

$$
i q_{t}=q_{x x} \pm 2 q^{2} q^{*} \quad \text { NLS }
$$

$A_{\infty}(k)$ can be related to the linear dispersion relation of constraint eq; i.e. if $q(x, t)=\exp \left(i\left(k x-\omega_{q}(2 k) t\right)\right)$ we find that

$$
A_{\infty}(k)=-\frac{i}{2} \omega_{q}(2 k)
$$

For NLS $\omega_{q}(k)=-k^{2}$ so $A_{\infty}(k)=2 i k^{2}$

Other Eigenvalue Problems

There have been numerous applications and generalizations of these method. For example the matrix generalization of 2×2 system; to $N \times N$ systems i.e.

$$
\frac{\partial v}{\partial x}=i k \mathbf{J} \mathbf{v}+\mathbf{Q} \mathbf{v}, \quad \frac{\partial \mathbf{v}}{\partial t}=\mathbf{T} \mathbf{v}
$$

where \mathbf{Q} are $N \times N$ matrices with $Q^{i i}=0$, $\mathbf{J}=\operatorname{diag}\left(J^{1}, J^{2}, \ldots, J^{N}\right)$, with $J^{i} \neq J^{j}$ for $i \neq j$ and $\mathbf{v}(x, t)$ is an N-dimensional vector
\mathbf{T} is also an $N \times N$ matrix and can be expanded in powers of k
Find numerous interesting compatible NL evol eq such as N wave eq, Boussinesq eq etc.

$2+1 d$ 'scattering' Problems

There are compatible systems in $2+1$ d and discrete systems In $2+1$ d perhaps the best known is the $N \times N$ linear system:

$$
\frac{\partial v}{\partial x}=\mathbf{J} \frac{\partial v}{\partial y}+\mathbf{Q} \mathbf{v}, \quad \frac{\partial \mathbf{v}}{\partial t}=\mathbf{T} \mathbf{v}
$$

Compatible systems are obtained by expanding \mathbf{T} in powers of $\frac{\partial}{\partial y}$
Find N wave, Davey-Stewartson (2×2 system with $r=\mp q^{*}$), and Kadomstsev-Petviashvili (KP) eq $(2 \times 2$ system with $r=-1)$:

$$
\left(q_{t}+6 q q_{x}+q_{x x x}\right)_{x}+\sigma^{2} q_{y y}=0 \quad \mathrm{KP}
$$

where $\sigma^{2}=\mp 1$: so called KP I,II eq
In scalar form spatial 'scattering' eq is $\sigma v_{y}+v_{x x}+u v=0$

Discrete Eigenvalue Problems

Recall the continuous 2×2 system

$$
\begin{aligned}
& v_{1, x}=-i k v_{1}+q(x, t) v_{2} \\
& v_{2, x}=i k v_{2}+r(x, t) v_{1}
\end{aligned}
$$

Discretizing $v_{j, x} \approx \frac{v_{j, n+1}-v_{j, n}}{h}$ and calling $z=e^{i k h} \approx 1+i k h+\cdots$ and $Q_{n}(t)=h q_{n}, R_{n}(t)=h r_{n}$ etc leads to the following discrete 2×2 eigenvalue problem

$$
\begin{aligned}
& v_{1, n+1}=z v_{1, n}+Q_{n}(t) v_{2, n} \\
& v_{2, n+1}=\frac{1}{z} v_{2, n}+R_{n}(t) v_{1, n}
\end{aligned}
$$

Discrete Eigenvalue Problems-con't

To

$$
\begin{aligned}
v_{1, n+1} & =z v_{1, n}+Q_{n}(t) v_{2, n} \\
v_{2, n+1} & =\frac{1}{z} v_{2, n}+R_{n}(t) v_{1, n}
\end{aligned}
$$

we add time dependence

$$
\begin{aligned}
& \frac{d v_{1, n}}{d t}=A v_{1, n}+B v_{2, n} \\
& \frac{d v_{2, n}}{d t}=C v_{1, n}+D v_{2, n}
\end{aligned}
$$

Making these two eq compatible and expanding $A_{n}, B_{n}, C_{n}, D_{n}$ in finite Laurent series in z yields NL Evol eq as constraints

Discrete Eigenvalue Problems-con't

Ex. Expanding
$A_{n}=\sum_{j=-2}^{2} A_{j, n} z^{j} \quad$ similar for B_{n}, C_{n}, D_{n} eventually yields

$$
\begin{aligned}
i \frac{d}{d t} Q_{n} & =Q_{n+1}-2 Q_{n}+Q_{n-1}-Q_{n} R_{n}\left(Q_{n+1}+Q_{n-1}\right) \\
-i \frac{d}{d t} R_{n} & =R_{n+1}-2 R_{n}+R_{n-1}-Q_{n} R_{n}\left(R_{n+1}+R_{n-1}\right)
\end{aligned}
$$

With $R_{n}=\mp Q_{n}^{*}$ we have the integrable discrete NLS eq

$$
i \frac{d}{d t} Q_{n}=Q_{n+1}-2 Q_{n}+Q_{n-1}-\left|Q_{n}\right|^{2}\left(Q_{n+1}+Q_{n-1}\right)
$$

or with $Q_{n}(t)=h q_{n}(t)$

$$
i \frac{d}{d t} q_{n}=\frac{1}{h^{2}}\left(q_{n+1}-2 q_{n}+q_{n-1}\right) \pm\left|q_{n}\right|^{2}\left(q_{n+1}+q_{n-1}\right)
$$

III. Inverse Scattering Transform (IST) for KdV

Motivation: linear Fourier Transform (FT)

Consider the linear evol eq

$$
u_{t}=\sum_{j=0}^{N} a_{j} \partial_{x}^{j} u, \quad a_{j} \in \mathbb{R} \text { const }
$$

The soln $u(x, t)$ can be found via FT as

$$
\begin{equation*}
u(x, t)=\frac{1}{2 \pi} \int b(k, t) e^{i k x} d k \tag{FT}
\end{equation*}
$$

where it is assumed that u is smooth and $|u| \rightarrow 0$ as $|x| \rightarrow \infty$ sufficiently rapidly; unless otherwise specified: $\int=\int_{-\infty}^{\infty}$

FourierTransform-con't

Substituting FT into linear eq yields (assume interchanges etc)

$$
\int \mathrm{e}^{i k x}\left\{b_{t}-b \sum_{j=0}^{N}(i k)^{j} a_{j}\right\} d k=0 \text { or } b_{t}=b \sum_{j=0}^{N}(i k)^{j} a_{j}
$$

So

$$
b(k, t)=b_{0}(k) \mathrm{e}^{-i \omega(k) t}, \quad \omega(k)=i \sum_{j=0}^{N}(i k)^{j} a_{j}
$$

Typically when $\omega(k) \in \mathbb{R}\left(a_{2 j}=0, j=0,1 \ldots\right)$, it is called the dispersion relation. Thus the soln is given by

$$
u(x, t)=\frac{1}{2 \pi} \int b_{0}(k) e^{i[k x-\omega(k) t]} d k
$$

For $u(x, t) \in \mathbb{R}$ require symmetry: $b_{0}^{*}(-k)=b_{0}(k)$

FourierTransform-Linear KdV

The previous result shows that for the linear KdV eq

$$
u_{t}+u_{x x x}=0
$$

from $u=e^{i[k x-\omega(k) t]}$ the linear dispersion relation is: $\omega=-k^{3}$ and the FT soln is given by

$$
u(x, t)=\frac{1}{2 \pi} \int b_{0}(k) e^{i\left[k x+k^{3} t\right]} d k
$$

The soln process via FT is given by

$$
\begin{aligned}
u(x, 0) & \xrightarrow{\text { direct } \mathrm{FT}} \quad b(k, 0)=b_{0}(k) \\
& \downarrow t: \text { time evolution } \\
u(x, t) & \stackrel{\text { inverse } \mathrm{FT}}{\leftrightarrows} b(k, t)=b_{0}(k) e^{-i \omega(k) t}
\end{aligned}
$$

IST for KdV

Compatibility of the following system
$L: v_{x x}+(\lambda+u(x, t)) v=0$ and $M: v_{t}=\left(\gamma+u_{x}\right) v+(4 \lambda-2 u) v_{x}$ where $\gamma=$ const and $\lambda_{t}=0$ yields the KdV eq

$$
u_{t}+6 u u_{x}+u_{x x x}=0 \quad \mathrm{KdV}
$$

Soln process via IST:

$$
\begin{array}{ll}
u(x, 0) \xrightarrow{\text { Direct Scatering }} L: S(k, 0) \\
& \quad \downarrow t: \text { time evolution: M } \\
\\
u(x, t) \stackrel{\text { Inverse Scatering }}{\leftrightarrows} & S(k, t)
\end{array}
$$

Direct Scattering-con't

Begin with discussion of direct scattering problem. Let $\lambda=k^{2}$, then L (scattering) operator is:

$$
L: \quad v_{x x}+\left(u(x)+k^{2}\right) v=0
$$

note suppression the time dependence in u. Assume that $u(x) \in \mathbb{R}$ and decays sufficiently rapidly, e.g. u lies in the space of functions

$$
L_{n}^{1}: \quad \int_{-\infty}^{\infty}\left(1+|x|^{n}\right)|u(x)| d x<\infty, \quad n \geq 2
$$

Associated with operator L are 2 sets of efcns for real k that are bounded for all values of x, and that have appropriate analytic extensions into UHP-k, LHP- k

Direct Scattering-con't

Appropriate efcns associated with operator L are defined from their BCs; i.e. identify 4 efans defined by the following asymptotic BCs

$$
\begin{aligned}
& \phi(x ; k) \sim e^{-i k x}, \quad \bar{\phi}(x ; k) \sim e^{i k x} \quad \text { as } \quad x \rightarrow-\infty \\
& \psi(x ; k) \sim e^{i k x}, \quad \bar{\psi}(x ; k) \sim e^{-i k x} \quad \text { as } \quad x \rightarrow \infty
\end{aligned}
$$

So, e.g. $\phi(x, k)$ is a soln of L eq which tends to $e^{-i k x}$ as $x \rightarrow-\infty$ etc. Note: $\bar{\phi}$ does not represent cc; rather ${ }^{*}=c c$ From L and BCs and $u(x) \in \mathbb{R}$ have symmetries:

$$
\begin{aligned}
& \phi(x ; k)=\bar{\phi}(x ;-k)=\phi^{*}(x,-k) \\
& \psi(x ; k)=\psi(x ;-k)=\psi^{*}(x,-k)
\end{aligned}
$$

Direct Scattering-con't

The Wronskian of 2 solns ψ, ϕ is defined as

$$
W(\phi, \psi)=\phi \psi_{x}-\phi_{x} \psi
$$

and from Abel's Theorem, the Wronskian is const. Hence from $\pm \infty$:

$$
W(\psi, \bar{\psi})=-2 i k=-W(\phi, \bar{\phi})
$$

Since L is a linear 2nd order ODE, from linear independence of its solutions we obtain the following completeness relationships between the efcns

$$
\begin{aligned}
\phi(x ; k) & =a(k) \bar{\psi}(x ; k)+b(k) \psi(x ; k) \\
\bar{\phi}(x ; k) & =-\bar{a}(k) \psi(x ; k)+\bar{b}(k) \bar{\psi}(x ; k)
\end{aligned}
$$

For $u(x) \in \mathbb{R}$ only need first eq

Direct Scattering-con't

$a(k), b(k)$ can be expressed in terms of Wronskians:

$$
a(k)=\frac{W(\phi(x ; k), \psi(x ; k))}{2 i k}, \quad b(k)=-\frac{W(\phi(x ; k), \bar{\psi}(x ; k))}{2 i k}
$$

Thus $\phi, \psi, \bar{\psi}$ determine $a(k), b(k)$ which are part of the 'scattering data'
Also have symmetries: $a(-k)=a^{*}(k) ; b(-k)=b^{*}(k)$ and unitarity:

$$
|a(k)|^{2}-|b(k)|^{2}=1, \quad k \in \mathbb{R}
$$

Direct Scattering-con't

It is more convenient to work with modified efens $M(x ; k), N(x ; k), \bar{N}(x ; k)$:

$$
\begin{aligned}
M(x ; k) & =\phi(x ; k) e^{i k x} \\
N(x ; k) & =\psi(x ; k) e^{i k x}, \quad \bar{N}(x ; k)=\bar{\psi}(x ; k) e^{i k x}
\end{aligned}
$$

Completeness of efcns implies

$$
\frac{M(x ; k)}{a(k)}=\bar{N}(x ; k)+\rho(k) N(x ; k)
$$

where $\quad \rho(k)=\frac{b(k)}{a(k)}$
$\tau(k)=1 / a(k)$ and $\rho(k)$ are called the transmission and reflection coefs

Direct Scattering-con't

$\psi(x ; k)=\bar{\psi}(x ;-k) \quad$ implies $\quad N(x ; k)=\bar{N}(x ;-k) e^{2 i k x}$
Due to this symmetry will only need 2 efcns. Namely, from completeness:

$$
\begin{equation*}
\frac{M(x ; k)}{a(k)}=\bar{N}(x ; k)+\rho(k) e^{2 i k x} \bar{N}(x ;-k) \tag{*}
\end{equation*}
$$

where $\quad \rho(k)=\frac{b(k)}{a(k)}$
$\left.{ }^{*}\right)$ will be a fundamental eq. Later will show that $\left(^{*}\right)$ leads to a generalized Riemann-Hilbert boundary value problem (RH)

Analyticity of Efcns

Theorem
For $u \in L_{2}^{1}: \int_{-\infty}^{\infty}\left(1+|x|^{2}\right)|u|<\infty$
(i) $M(x ; k)$ and $a(k)$ are analytic fcns of k for Imk >0 and tend to unity as $|k| \rightarrow \infty$; they are continuous on Im $k=0$;
(ii) $\bar{N}(x ; k)$ and $\bar{a}(k)$ are analytic fcns of k for Imk <0 and tend to unity as $|k| \rightarrow \infty$; they are continuous on Imk $=0$ Moreover, the solutions of the corresponding integral equations are unique.

Using Green's fcn techniques may show that $M(x ; k), \bar{N}(x ; k)$ satisfy the following Volterra integral eq

$$
\begin{aligned}
& M(x ; k)=1+\frac{1}{2 i k} \int_{-\infty}^{x}\left\{1-e^{2 i k(x-\xi)}\right\} u(\xi) M(\xi ; k) d \xi \\
& \bar{N}(x ; k)=1-\frac{1}{2 i k} \int_{x}^{\infty}\left\{1-e^{-2 i k(\xi-x)}\right\} u(\xi) \bar{N}(\xi ; k) d \xi
\end{aligned}
$$

Proof: Convergence of Neumann series

Potential and Efcns

From efcn can determine potential u
Using

$$
\bar{N}(x ; k)=1-\frac{1}{2 i k} \int_{x}^{\infty}\left\{1-e^{-2 i k(\xi-x)}\right\} u(\xi) \bar{N}(\xi ; k) d \xi
$$

then for $\operatorname{Im} k \geq 0$, as $k \rightarrow \infty$, iteration and Reimann-Lesbegue Lemma implies:

$$
\bar{N}(x ; k) \sim 1-\frac{1}{2 i k} \int_{x}^{\infty} u(\xi) d \xi \quad(* *)
$$

Analyticity, RH Problem and Scattering Data

We will work with

$$
\begin{equation*}
\frac{M(x ; k)}{a(k)}=\bar{N}(x ; k)+\rho(k) e^{2 i k x} \bar{N}(x ;-k) \tag{*}
\end{equation*}
$$

where $\rho(k)=\frac{b(k)}{a(k)}$
Note: LHS: $\frac{M(x ; k)}{a(k)}$ is analytic UHP-k/[zero's of $\left.a(k)\right]$; RHS:
$\bar{N}(x ; k)$ is analytic LHP-k;
We will consider remaining term as the 'jump' (change) in analyticity across Rek axis

Required Scattering Data

Scattering data that will be needed: $\rho(k)$ and information about zero's of $a(k)$

For real $u(x)$ from operator L can show:
$a(k)$ has a finite number of simple zero's on img axis:
$a\left(k_{j}\right)=0 ;\left\{k_{j}=i \kappa_{j}\right\}, j=1, \ldots J ; \kappa_{j}>0$;
Note also $a(k) \rightarrow 1$ as $k \rightarrow \infty$, analytic UHP-k; continuous Imk $=0$

At every zero $k_{j}=i \kappa_{j}$ there are L^{2} bound states:
$\phi_{j}=\phi\left(x, k_{j}\right), \psi_{j}=\psi\left(x, k_{j}\right)$ such that $\phi_{j}=b_{j} \psi_{j}=>M_{j}=b_{j} N_{j}$; for inverse problem we will need: $C_{j}=b_{j} / a^{\prime}\left(k_{j}\right) ; j=1, \ldots J$

Next: Inverse Problem

Recall scheme:

$$
\begin{aligned}
& u(x, 0) \xrightarrow{\text { Direct Scattering }} L: S(k, 0) \\
& t \text { : time evolution: } \mathrm{M} \\
& u(x, t) \stackrel{\text { Inverse Scattering }}{\longleftarrow} S(k, t)
\end{aligned}
$$

Next consider Inverse problem at fixed time

Inverse Scattering-Projection Operators

Recall

$$
\begin{equation*}
\frac{M(x ; k)}{a(k)}=\bar{N}(x ; k)+\rho(k) e^{2 i k x} \bar{N}(x ;-k) \tag{*}
\end{equation*}
$$

${ }^{*}$) is fundamental eq.
Apart from poles at $a\left(k_{j}\right)=0, \quad \frac{M(x ; k)}{a(k)}$ is anal UHP; and $\bar{N}(x ; k)$ is anal in LHP. $(*)$ a generalized (RH) prob'; it leads to an integral eq for $N(x ; k)$

Use projection operators
Consider the $\mathcal{P}^{ \pm}$projection operator defined by
$\left(\mathcal{P}^{ \pm} f\right)(k)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{f(\zeta) d \zeta}{\zeta-(k \pm i 0)}=\lim _{\varepsilon \downarrow 0}\left\{\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{f(\zeta) d \zeta}{\zeta-(k \pm i \varepsilon)}\right\}$

Projection Operators-con't

If $f(k)=f_{ \pm}(k)$ is anal in the UHP/LHP- k and $f_{ \pm}(k) \rightarrow 0$ as $|k| \rightarrow \infty$ (for Im $k_{<}^{>} 0$), then from contour integration:

$$
\begin{aligned}
& \left(\mathcal{P}^{ \pm} f_{\mp}\right)(k)=0 \\
& \left(\mathcal{P}^{ \pm} f_{ \pm}\right)(k)= \pm f_{ \pm}(k)
\end{aligned}
$$

To most easily explain ideas, 1st assume that there are no poles, that is $a(k) \neq 0$. Then operating on $\left(^{*}\right)$ with \mathcal{P}^{-}:
$\mathcal{P}^{-}\left[\left(\frac{M(x ; k)}{a(k)}-1\right)\right]=\mathcal{P}^{-}\left[(\bar{N}(x ; k)-1)+\rho(k) e^{2 i k x} \bar{N}(x ;-k)\right]$
From Proj: LHS $=0$ (since assumed no zero's of $a(k)$); and $\mathcal{P}^{-}[(\bar{N}(x ; k)-1)]=-(\bar{N}(x ; k)-1)$ implies

Inverse Problem: no poles

$$
\begin{equation*}
\bar{N}(x ; k)=1+\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{\rho(\zeta) N(x ; \zeta) d \zeta}{\zeta-(k-i 0)} \tag{E1}
\end{equation*}
$$

Symmetry: $\quad N(x ; k)=e^{2 i k x} \bar{N}(x ;-k)=>$ an integral eq

$$
N(x ; k)=e^{2 i k x}\left\{1+\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{\rho(\zeta) N(x ; \zeta) d \zeta}{\zeta+k+i 0}\right\}
$$

Reconstruction of the potential u; As $k \rightarrow \infty$ (E1) implies

$$
\begin{equation*}
\bar{N}(x ; k) \sim 1-\frac{1}{2 \pi i k} \int_{-\infty}^{\infty} \rho(\zeta) N(x ; \zeta) d \zeta \tag{E2}
\end{equation*}
$$

From direct integral eq $\left({ }^{* *}\right): \quad \bar{N}(x ; k) \sim 1-\frac{1}{2 i k} \int_{x}^{\infty} u(\xi) d \xi$; comparing (${ }^{* *}$) \& (E2):

$$
u(x)=-\frac{\partial}{\partial x}\left\{\frac{1}{\pi} \int_{-\infty}^{\infty} \rho(\zeta) N(x ; \zeta) d \zeta\right\}
$$

Inverse Problem: Including Poles

For the case when $a(k)$ has zeros, one can extend the above result; suppose

$$
a\left(k_{j}=i \kappa_{j}\right)=0, \quad \kappa_{j}>0, \quad j=1, \cdots J
$$

then call

$$
N_{j}(x)=N\left(x ; k_{j}\right)
$$

Subtracting the pole contributions and carrying out similar calculations as before leads to

$$
N(x ; k)=e^{2 i k x}\left\{1-\sum_{j=1}^{J} \frac{C_{j} N_{j}(x)}{k+i \kappa_{j}}+\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{\rho(\zeta) N(x ; \zeta) d \zeta}{\zeta+k+i 0}\right\}
$$

Inverse Problem: Including Poles-con't

To complete the system, evaluate at $k=k_{p}=i \kappa_{p}$

$$
\begin{aligned}
& N(x ; k)=e^{2 i k x}\left\{1-\sum_{j=1}^{J} \frac{C_{j} N_{j}(x)}{k+i \kappa_{j}}+\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{\rho(\zeta) N(x ; \zeta) d \zeta}{\zeta+k+i 0}\right\} \\
& N_{p}(x)=e^{-2 \kappa_{p} x}\left\{1-\sum_{j=1}^{J} \frac{C_{j} N_{j}(x)}{i\left(\kappa_{p}+\kappa_{j}\right)}+\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{\rho(\zeta) N(x ; \zeta) d \zeta}{\zeta+i \kappa_{p}}\right\}
\end{aligned}
$$

for $p=1, \ldots J$. Above is a coupled system of integral eq for $N(x, k) ;\left\{N_{j}(x)=N\left(x, k_{j}\right)\right\}, j=1, \cdots, L$
From these eq $u(x)$ is reconstructed from

$$
u(x)=\frac{\partial}{\partial x}\left\{2 \sum_{j=1}^{J} C_{j} N_{j}(x)-\frac{1}{\pi} \int_{-\infty}^{\infty} \rho(\zeta) N(x ; \zeta) d \zeta\right\}
$$

IST - So Far

So far in the IST process direct and inverse problem have been discussed.
Direct problem (from operator L): $u(x) \rightarrow \mathcal{S}(k)$
Inverse problem: $\mathcal{S}(k)=\left\{\rho(k), \quad\left\{\kappa_{j}, C_{j}\right\}\right\} \rightarrow u(x)$
Direct and inverse problems are the NL analogues of the direct and inverse Fourier transform
Next need time dependence; recall:

$$
\begin{aligned}
& u(x, 0) \xrightarrow{\text { Direct Scattering }} L: S(k, 0) \\
& \downarrow t: \text { time evolution: M } \\
& u(x, t) \stackrel{\text { Inverse Scattering }}{\stackrel{~}{4}} S(k, t)
\end{aligned}
$$

IST: Time Dependence

For time dependence use associated time evolution operator: M which for the KdV eq is

$$
v_{t}=M v=\left(u_{x}+\gamma\right) v+\left(4 k^{2}-2 u\right) v_{x}
$$

with γ const. With $v=\phi(x, k)$ and using

$$
\phi(x, t ; k)=M(x, t ; k) e^{-i k x}
$$

M then satisfies

$$
M_{t}=\left(\gamma-4 i k^{3}+u_{x}+2 i k u\right) M+\left(4 k^{2}-2 u\right) M_{x}
$$

Also recall

$$
M(x, t ; k)=a(k, t) \bar{N}(x, t ; k)+b(k, t) N(x, t ; k)
$$

IST: Time Dependence

The asymptotic behavior of $M(x, t ; k)$ is given by

$$
\begin{array}{ll}
M(x, t ; k) \rightarrow 1, & \text { as } \quad x \rightarrow-\infty \\
M(x, t ; k) \rightarrow a(k, t)+b(k, t) e^{2 i k x} & \text { as } \quad x \rightarrow \infty
\end{array}
$$

From

$$
M_{t}=\left(\gamma-4 i k^{3}+u_{x}+2 i k u\right) M+\left(4 k^{2}-2 u\right) M_{x}
$$

and using the fact that $u \rightarrow 0$ rapidly as $x \rightarrow \pm \infty$, find

$$
\begin{array}{r}
\gamma-4 i k^{3}=0, \quad x \rightarrow-\infty \\
a_{t}+b_{t} e^{2 i k x}=8 i k^{3} b e^{2 i k x}, \quad x \rightarrow+\infty
\end{array}
$$

and by equating coef of $e^{0}, e^{2 i k x}$ find

$$
a_{t}=0, \quad b_{t}=8 i k^{3} b
$$

IST: Time Dependence-con't

Solving a, b eq yields

$$
\begin{gathered}
a(k, t)=a(k, 0), \quad b(k, t)=b(k, 0) \exp \left(8 i k^{3} t\right) \quad \text { so } \\
\rho(k, t)=\frac{b(k, t)}{a(k, t)}=\rho(k, 0) e^{8 i k^{3} t}
\end{gathered}
$$

$a\left(k_{j}\right)=0$ implies zero's (evalues) k_{j} which are finite in number, simple, and lie on the Im axis, also satisfy

$$
k_{j}=i \kappa_{j}=\mathrm{constant}, \quad j=1, \ldots, J
$$

Since the evalues are const in time; so this is an "isospectral flow" Also find the time dependence of the $C_{j}(t)$ is given by

$$
C_{j}(t)=C_{j}(0) e^{8 i k_{j}^{3} t}=C_{j}(0) e^{8 \kappa_{j}^{3} t} \quad j=1, \ldots J
$$

IST

Thus we have the time dependence scattering data:
$\mathcal{S}(k, t)=\left\{\rho(k, t), \quad\left\{\kappa_{j}, C_{j}(t)\right\} \quad j=1, \ldots, J\right\}$; with
$\rho(k, t)=\rho(k, 0) e^{8 i k^{3} t} ; \kappa_{j}=$ const; $C_{j}(t)=C_{j}(0) e^{8 \kappa_{j}^{3} t} j=1, \ldots J$
This completes the IST formulation:

$$
\begin{array}{ll}
u(x, 0) & \xrightarrow{\text { Direct Scattering }} L: S(k, 0) \\
& \quad \downarrow t: \text { time evolution: M } \\
u(x, t) \stackrel{\text { Inverse Scattering }}{\rightleftarrows} S(k, t)
\end{array}
$$

Inverse Problem: Including Poles-time included

To complete the system, evaluate at $k=k_{p}=i \kappa_{p}$
$N(x, t ; k)=e^{2 i k x}\left\{1-\sum_{j=1}^{J} \frac{C_{j}(t) N_{j}(x, t)}{k+i \kappa_{j}}+\int_{-\infty}^{\infty} \frac{\rho(\zeta, t) N(x, t ; \zeta) d \zeta}{2 \pi i(\zeta+k+i 0)}\right\}$
$N_{p}(x, t)=e^{-2 \kappa_{p} x}\left\{1-\sum_{j=1}^{J} \frac{C_{j}(t) N_{j}(x, t)}{i\left(\kappa_{p}+\kappa_{j}\right)}+\int_{-\infty}^{\infty} \frac{\rho(\zeta, t) N(x, t ; \zeta) d \zeta}{2 \pi i\left(\zeta+i \kappa_{p}\right)}\right\}$
for $p=1, \ldots J$. Above is a coupled system of integral eq for $N(x, k) ;\left\{N_{j}(x)=N\left(x, k_{j}\right)\right\}, j=1, \cdots, L$
From these eq $u(x)$ is reconstructed from

$$
u(x, t)=\frac{\partial}{\partial x}\left\{2 \sum_{j=1}^{J} C_{j}(t) N_{j}(x, t)-\frac{1}{\pi} \int_{-\infty}^{\infty} \rho(\zeta, t) N(x, t ; \zeta) d \zeta\right\}
$$

'Pure' Solitons-Reflectionless Potls

'Pure' solitons are obtained by assuming $\rho(k, 0)=0$ 'reflectionless' potentials. From IST-need only the discrete contributions

$$
N_{p}(x, t)=e^{-2 \kappa_{p} x}\left\{1-\sum_{j=1}^{J} \frac{C_{j}(t) N_{j}(x, t)}{i\left(\kappa_{p}+\kappa_{j}\right)}\right\}, \quad p=1, \cdots, J
$$

Above is a linear algebraic system for
$\left\{N_{p}(x, t)=N\left(x, t, k_{p}\right)\right\}, p=1, . ., J$
From these eq $u(x, t)$ is reconstructed from

$$
u(x, t)=\frac{\partial}{\partial x}\left\{2 \sum_{j=1}^{J} C_{j}(t) N_{j}(x, t)\right\}
$$

IST-One Soliton

When there is only one ev $(J=1)$ find

$$
N_{1}(x, t)-\frac{i C_{1}(0)}{2 \kappa_{1}} e^{-2 \kappa_{1} x+8 \kappa_{1}^{3} t} N_{1}(x, t)=e^{-2 \kappa_{1} x}
$$

which yields $N_{1}(x, t)$ and $u(x, t)$:

$$
\begin{aligned}
N_{1}(x, t) & =\frac{2 \kappa_{1} e^{-2 \kappa_{1} x}}{2 \kappa_{1}-i C_{1}(0) e^{-2 \kappa_{1} x+8 \kappa_{1}^{3} t}} \\
u(x, t) & =2 \frac{\partial}{\partial x}\left\{e^{8 \kappa_{1}^{3} t} i C_{1}(0) N_{1}(x, t)\right\}
\end{aligned}
$$

which leads to the familiar one soliton soln:

$$
u(x, t)=2 \kappa_{1}^{2} \operatorname{sech}^{2}\left\{\kappa_{1}\left(x-4 \kappa_{1}^{2} t-x_{1}\right)\right\}
$$

where x_{1} is defined via $-i C_{1}(0)=2 \kappa_{1} \exp \left(2 \kappa_{1} x_{1}\right)$

Conserved Quantities

May relate $a(k)$, which is a constant of motion, to an infinite number of conserved quantities from

$$
\begin{aligned}
a(k) & =\frac{1}{2 i k} W(\phi, \psi) \\
& =\frac{1}{2 i k}\left(\phi \psi_{x}-\phi_{x} \psi\right)=\lim _{x \rightarrow+\infty} \frac{1}{2 i k}\left(\phi i k \mathrm{e}^{i k x}-\phi_{x} \mathrm{e}^{i k x}\right)
\end{aligned}
$$

and developing large k expn for $\phi(x, t ; k)$ as a functional of u The first few nontrivial conserved quantities are found to be:

$$
C_{1}=\int_{-\infty}^{\infty} u d x, \quad C_{3}=\int_{-\infty}^{\infty} u^{2} d x, \quad C_{5}=\int_{-\infty}^{\infty}\left(2 u^{3}-u_{x}^{2}\right) d x, \ldots
$$

May use similar ideas to find conservation laws:

$$
\partial_{t} T_{j}+\partial_{x} F_{j}=0, \quad j=1,2 \ldots
$$

IST-via Gel'fand-Levitan-Marchenko (GLM) Eq

The GLM eq may be derived from the RH formulation $N(x, t ; k)$ is written in terms of a triangular kernel:

$$
N(x, t ; k)=e^{2 i k x}\left\{1+\int_{x}^{\infty} K(x, s ; t) e^{i k(s-x)} d s\right\}
$$

Subst above into RH formulation and taking a FT yields
$K(x, y ; t)+F(x+y ; t)+\int_{x}^{\infty} K(x, s ; t) F(s+y ; t) d s=0, \quad y>x$

$$
\text { where } F(x ; t)=\sum_{j=1}^{L}(-i) C_{j}(t) e^{-\kappa_{j} x}+\frac{1}{2 \pi} \int_{-\infty}^{\infty} \rho(k, t) e^{i k x} d k
$$

and also find: $\quad u(x, t)=2 \partial_{x} K(x, x ; t)$
May get soliton solns from GLM; Rigorous inverse pb:
Deift-Trubowitz ('79); Marchenko ('86); ...

IV. IST: 2×2 Systems

Next study following 2×2 compatible systems:

$$
\begin{aligned}
& v_{x}=L v=\left(\begin{array}{cc}
-i k & q \\
r & i k
\end{array}\right) v \\
& v_{t}=M v=\left(\begin{array}{cc}
A & B \\
C & -A
\end{array}\right) v
\end{aligned}
$$

The 'scattering' eq may be written in the form:

$$
\begin{gathered}
v_{x}=(i k \mathbf{J}+\mathbf{Q}) v \quad \text { where } \\
\mathbf{J}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad \mathbf{Q}=\left(\begin{array}{cc}
0 & q \\
r & 0
\end{array}\right)
\end{gathered}
$$

IST-2 $\times 2$ Systems Direct Scattering

Recall: Soln process via IST:

$$
\begin{aligned}
u(x, 0) & \xrightarrow{\text { Direct Scattering }} L: S(k, 0) \\
& \downarrow t: \text { time evolution: M } \\
u(x, t) \stackrel{\text { Inverse Scattering }}{\leftrightarrows} & S(k, t)
\end{aligned}
$$

For

$$
v_{x}=L v=\left(\begin{array}{cc}
-i k & q \\
r & i k
\end{array}\right) v
$$

when $q, r \rightarrow 0$ sufficiently rapidly as $x \rightarrow \pm \infty$ the efcns are asymptotic to the solns of

$$
v_{x} \sim\left(\begin{array}{cc}
-i k & 0 \\
0 & i k
\end{array}\right) v
$$

Efcns-2 $\times 2$ Systems

Key efcns defined by the following BCs:
$\begin{aligned} \phi(x, k) & \sim\binom{1}{0} e^{-i k x}, & \bar{\phi}(x, k) & \sim\binom{0}{1} e^{i k x}\end{aligned} \quad$ as $x \rightarrow-\infty, ~\binom{0}{1} e^{i k x}, \quad \bar{\psi}(x, k) \sim\binom{1}{0} e^{-i k x} \quad$ as $x \rightarrow+\infty$
Convenient to work with efens which have const BCs at infinity: As $x \rightarrow-\infty$:
$M(x, k)=e^{i k x} \phi(x, k) \sim\binom{1}{0}, \quad \bar{M}(x, k)=e^{-i k x} \bar{\phi}(x, k) \sim\binom{0}{1}$
As $x \rightarrow \infty$:
$N(x, k)=e^{-i k x} \psi(x, k) \sim\binom{0}{1}, \quad \bar{N}(x, k)=e^{i k x} \psi(x, k) \sim\binom{1}{0}$

Wronskian and Lin Indepence of Efcns

Let $\quad u(x, k)=\left(u^{(1)}(x, k), u^{(2)}(x, k)\right)^{T} \quad$ and

$$
v(x, k)=\left(v^{(1)}(x, k), v^{(2)}(x, k)\right)^{T} \quad \text { be } 2 \text { solns of } L \text { eq }
$$

The Wronskian of u and v is

$$
W(u, v)=u^{(1)} v^{(2)}-u^{(2)} v^{(1)}
$$

which satisfies

$$
\frac{d}{d x} W(u, v)=0=>W(u, v)=W_{0} \text { const }
$$

From the asymptotic behavior of the efcns find:

$$
\begin{aligned}
W(\phi, \bar{\phi}) & =\lim _{x \rightarrow-\infty} W(\phi(x, k), \bar{\phi}(x, k))=1 \\
W(\psi, \bar{\psi}) & =\lim _{x \rightarrow+\infty} W(\psi(x, k), \bar{\psi}(x, k))=-1
\end{aligned}
$$

Thus the solns ϕ and $\bar{\phi}$ are linearly independent, as are ψ and $\bar{\psi}$

Efcns and Scattering Data

Completeness of efcns implies

$$
\begin{aligned}
\phi(x, k) & =b(k) \psi(x, k)+a(k) \bar{\psi}(x, k) \\
\bar{\phi}(x, k) & =\bar{a}(k) \psi(x, k)+\bar{b}(k) \bar{\psi}(x, k)
\end{aligned}
$$

It follows that $a(k), \bar{a}(k), b(k), \bar{b}(k)$ (scatt data) satisfy:

$$
\begin{array}{lll}
a(k)=W(\phi, \psi), & \bar{a}(k)=W(\bar{\psi}, \bar{\phi}) \\
b(k)=W(\bar{\psi}, \phi), & \bar{b}(k)=W(\bar{\phi}, \psi)
\end{array}
$$

Also have unitarity:

$$
a(k) \bar{a}(k)-b(k) \bar{b}(k)=1, \quad k \in \mathbb{R}
$$

Efcns and Scattering Data-con't

In terms of M, N, \bar{M}, \bar{N} completeness implies:

$$
\begin{aligned}
& \frac{M(x, k)}{a(k)}=\bar{N}(x, k)+\rho(k) e^{2 i k x} N(x, k) \\
& \frac{\bar{M}(x, k)}{\bar{a}(k)}=N(x, k)+\bar{\rho}(k) e^{-2 i k x} \bar{N}(x, k)
\end{aligned}
$$

where the reflection coefficients are

$$
\rho(k)=b(k) / a(k), \quad \bar{\rho}(k)=\bar{b}(k) / \bar{a}(k)
$$

The above eqs will be considered as generalized Riemann-Hilbert (RH) pbs. Need analyticity-next

Efcns-2 $\times 2$ Systems: Diff Eq

The fans $M(x, k), \bar{N}(x, k)$ satisfy the following DE for $\chi(x, k)$:

$$
\partial_{x} \chi(x, k)=i k(\mathbf{J}+\mathbf{I}) \chi(x, k)+(\mathbf{Q} \chi)(x, k)
$$

while the fons $\bar{M}(x, k), N(x, k)$ satisfy the DE for $\bar{\chi}(x, k)$:

$$
\partial_{x} \bar{\chi}(x, k)=i k(\mathbf{J}-\mathbf{I}) \bar{\chi}(x, k)+(\mathbf{Q} \bar{\chi})(x, k)
$$

where

$$
\mathbf{J}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad \mathbf{Q}=\left(\begin{array}{cc}
0 & q \\
r & 0
\end{array}\right)
$$

and \mathbf{I} is the 2×2 identity matrix. Via Green's fcns methods we may convert DE to an Integral eq

Efcns-2 $\times 2$ Systems: Integral Eq

Efcns can be written in terms of Volterra integral eq:

$$
\begin{aligned}
& M(x, k)=\binom{1}{0}+\int_{-\infty}^{+\infty} \mathbf{G}_{+}\left(x-x^{\prime}, k\right) \mathbf{Q}\left(x^{\prime}\right) M\left(x^{\prime}, k\right) d x^{\prime} \\
& N(x, k)=\binom{0}{1}+\int_{-\infty}^{+\infty} \overline{\mathbf{G}}_{+}\left(x-x^{\prime}, k\right) \mathbf{Q}\left(x^{\prime}\right) N\left(x^{\prime}, k\right) d x^{\prime} \\
& \bar{M}(x, k)=\binom{0}{1}+\int_{-\infty}^{+\infty} \overline{\mathbf{G}}_{-}\left(x-x^{\prime}, k\right) \mathbf{Q}\left(x^{\prime}\right) \bar{M}\left(x^{\prime}, k\right) d x^{\prime} \\
& \bar{N}(x, k)=\binom{1}{0}+\int_{-\infty}^{+\infty} \mathbf{G}_{-}\left(x-x^{\prime}, k\right) \mathbf{Q}\left(x^{\prime}\right) \bar{N}\left(x^{\prime}, k\right) d x^{\prime}
\end{aligned}
$$

with $(\theta(x)$ Heaviside fcn):
$\mathbf{G}_{ \pm}(x, k)= \pm \theta(\pm x)\left(\begin{array}{cc}1 & 0 \\ 0 & e^{2 i k x}\end{array}\right), \overline{\mathbf{G}}_{ \pm}(x, k)=\mp \theta(\mp x)\left(\begin{array}{cc}e^{-2 i k x} & 0 \\ 0 & 1\end{array}\right)$

Analyticity of Efcns

Theorem
If $q, r \in L^{1}(\mathbb{R})$, then $\{M(x, k), N(x, k), a(k)\}$ are analytic functions of k for $\operatorname{Im} k>0$ and continuous for $\operatorname{Im} k \geq 0$, while $\{\bar{M}(x, k), \bar{N}(x, k), \bar{a}(k)\}$ are analytic functions of k for $\operatorname{Im} k<0$ and continuous for $\operatorname{Im} k \leq 0$. Moreover, the solutions of the corresponding integral equations are unique.
Proof: Convergence of Neumann series

Large k Behavior

From the integral equations can compute the asymptotic expn as $k \rightarrow \infty$ (in the proper half-plane) for the efons; find

$$
\left.\begin{array}{l}
M(x, k)=\binom{1-\frac{1}{2 i k} \int_{-\infty}^{x} q\left(x^{\prime}\right) r\left(x^{\prime}\right) d x^{\prime}}{-\frac{1}{2 i k} r(x)}+O\left(1 / k^{2}\right) \\
\bar{N}(x, k)=\binom{1+\frac{1}{2 i k} \int_{x}^{+\infty} q\left(x^{\prime}\right) r\left(x^{\prime}\right) d x^{\prime}}{-\frac{1}{2 i k} r(x)}+O\left(1 / k^{2}\right) \\
N(x, k)=\binom{\frac{1}{2 i k} q(x)}{1-\frac{1}{2 i k} \int_{x}^{+\infty} q\left(x^{\prime}\right) r\left(x^{\prime}\right) d x^{\prime}}+O\left(1 / k^{2}\right) \\
\bar{M}(x, k)=\left(\begin{array}{c}
1+\frac{1}{2 i k} \int_{-\infty}^{\frac{1}{2 i k}} q(x) \\
x
\end{array}\left(x^{\prime}\right) r\left(x^{\prime}\right) d x^{\prime}\right.
\end{array}\right)+O\left(1 / k^{2}\right) .
$$

and

$$
a(k)=1+O\left(\frac{1}{k}\right) \text { and } \quad \bar{a}(k)=1+O\left(\frac{1}{k}\right) \text { as } k \rightarrow \infty
$$

Required Scattering Data

Scattering data that will be needed-in general position: $\rho(k), \bar{\rho}(k)$ and information about zero's (evalues) of $a(k), \bar{a}(k)$
For general $q(x), r(x)$ proper evalues correspond to L^{2} bound states; they are assumed simple and not on the real k axis
At: $a\left(k_{j}\right)=0, k_{j}=\xi_{j}+i \eta_{j}, \eta_{j}>0, \quad j=1,2, \ldots, J$ with

$$
\phi_{j}(x)=b_{j} \psi_{j}(x) \text { where } \phi_{j}(x)=\phi\left(x, k_{j}\right) \text { etc }
$$

This implies
Similarly at: $\bar{a}\left(\bar{k}_{j}\right)=0, \bar{k}_{j}=\bar{\xi}_{j}-i \bar{\eta}_{j}, \bar{\eta}_{j}>0, \quad j=1,2, \ldots, \bar{\jmath}$ with

$$
\bar{\phi}_{j}(x)=\bar{b}_{j} \bar{\psi}_{j}(x)
$$

Required Scattering Data-con't

In terms of M, N, \bar{M}, \bar{N} proper evalues correspond to

$$
M_{j}(x)=b_{j} e^{2 i k_{j} x} N_{j}(x), \quad \bar{M}_{j}(x)=\bar{b}_{j} e^{-2 i \bar{k}_{j} x} \bar{N}_{j}(x)
$$

For the inverse pb require: $C_{j}=b_{j} / a^{\prime}\left(k_{j}\right), \bar{C}_{j}=\bar{b}_{j} / \bar{a}^{\prime}\left(\bar{k}_{j}\right)$
Scattering data that will be needed:

$$
\mathcal{S}(k)=\left\{\rho(k),\left\{k_{j}, C_{j}\right\}, j=1, \ldots, J ; \bar{\rho}(k),\left\{\bar{k}_{j}, \bar{C}_{j}\right\}, j=1, \ldots, \bar{J}\right\}
$$

Symmetry Reductions

When $r(x)=\mp q^{*}(x)$:

$$
\begin{aligned}
& \bar{N}(x, k)=\binom{N^{(2)}\left(x, k^{*}\right)}{\mp N^{(1)}\left(x, k^{*}\right)}^{*}, \quad \bar{M}(x, k)=\binom{\mp M^{(2)}\left(x, k^{*}\right)}{M^{(1)}\left(x, k^{*}\right)}^{*} \\
& \bar{a}(k)=a^{*}\left(k^{*}\right), \quad \bar{b}(k)=\mp b^{*}\left(k^{*}\right),
\end{aligned}
$$

Thus the zeros of $a(k)$ and $\bar{a}(k)$ are paired, equal in number: $\bar{J}=J$

$$
\bar{k}_{j}=k_{j}^{*}, \quad \bar{b}_{j}=-b_{j}^{*} \quad j=1, \ldots, J
$$

Only have evalues when $r(x)=-q^{*}(x)$: no evalues when $r(x)=+q^{*}(x)$

Symmetry Reductions-con't

For $r(x)=\mp q(x), q(x) \in \mathbb{R}$:

$$
\begin{array}{cc}
\bar{N}(x, k)=\binom{N^{(2)}(x,-k)}{\mp N^{(1)}(x,-k)}, & \bar{M}(x, k)=\binom{\mp M^{(2)}(x,-k)}{M^{(1)}(x,-k)} \\
\bar{a}(k)=a(-k), & \bar{b}(k)=\mp b(-k),
\end{array}
$$

Thus the zeros of $a(k)$ and $\bar{a}(k)$ are paired, equal in number: $\bar{J}=J$

$$
\bar{k}_{j}=-k_{j}, \quad \bar{b}_{j}=-b_{j}^{*} \quad j=1, \ldots, J
$$

Only have evalues when $r(x)=-q(x) \in \mathbb{R}$: no evalues when $r(x)=+q(x)$
Since $r(x)=-q(x) \in \mathbb{R}$ satisfies $r(x)=-q(x)^{*}$ both symmetry conditions hold; so when k_{j} is an evalue so is $-k_{j}^{*}$; i.e. either the evalues come in pairs: $\left\{k_{j},-k_{j}^{*}\right\}$ or they are pure Img

Symmetry Reductions-con't

For $r(x)=\mp q^{*}(-x)$
$N(x, k)=\binom{ \pm M^{(2)}\left(-x,-k^{*}\right)^{*}}{M^{(1)}\left(-x,-k^{*}\right)}^{*}, \bar{N}(x, k)=\binom{ \pm \bar{M}^{(2)}\left(-x,-k^{*}\right)}{\bar{M}^{(1)}\left(-x,-k^{*}\right)}^{*}$
and the scattering data satisfies

$$
a(k)=a^{*}\left(-k^{*}\right), \quad \bar{a}(k)=\bar{a}^{*}\left(-k^{*}\right), \quad \bar{b}(k)=\mp b^{*}\left(-k^{*}\right)
$$

It follows that if $k_{j}=\xi_{j}+i \eta_{j}$ is a zero of $a(k)$ in UHP- k then
$-k_{j}^{*}=-\xi_{j}+i \eta_{j}$ is also a zero of a(k) in UHP- k etc
Also need data from 'right' which relate to data from 'left' - will not go into detail here

Inverse Problem

Recall: Soln process via IST:

$$
\begin{aligned}
& u(x, 0) \xrightarrow{\text { Direct Scattering }} L: S(k, 0) \\
& \downarrow t \text { : time evolution: M } \\
& u(x, t) \stackrel{\text { Inverse Scattering }}{\longleftarrow} S(k, t)
\end{aligned}
$$

Operating with projection operators on the completeness relations after subtracting behavior at infinity and pole contributions

$$
\begin{aligned}
& \frac{M(x, k)}{a(k)}=\bar{N}(x, k)+\rho(k) e^{2 i k x} N(x, k) \\
& \frac{\bar{M}(x, k)}{\bar{a}(k)}=N(x, k)+\bar{\rho}(k) e^{-2 i k x} \bar{N}(x, k)
\end{aligned}
$$

yields integral eqs

Inverse Problem-Integral Eq

Genl $q(x), r(x)$:
$\bar{N}(x, k)=\binom{1}{0}+\sum_{j=1}^{J} \frac{C_{j} e^{2 i k_{j} x}}{k-k_{j}} N_{j}(x)+\int_{-\infty}^{+\infty} \frac{\rho(\zeta) e^{2 i \zeta x} N(x, \zeta) d \zeta}{2 \pi i(\zeta-(k-i 0))}$
$N(x, k)=\binom{0}{1}+\sum_{j=1}^{\bar{J}} \frac{\bar{C}_{j} e^{-2 i \bar{k}_{j} x}}{k-\bar{k}_{j}} \bar{N}_{j}(x)-\int_{-\infty}^{+\infty} \frac{\bar{\rho}(\zeta) e^{-2 i \zeta x} \bar{N}(x, \zeta) d \zeta}{2 \pi i(\zeta-(k+i 0))}$
where $N_{j}(x)=N\left(x, k_{j}\right), \bar{N}_{j}(x)=\bar{N}\left(x, \bar{k}_{j}\right)$ We close the system by evaluating above eq at k_{p} and $\bar{k}_{p} ; \quad p=1,2, \ldots, J$ resp.
By considering large k behavior from above eq and from direct Volterra integral eq we find reconstruction formulae for $r(x), q(x)$

Inverse Problem-Reconstruction Formulae

Genl $q(x), r(x)$:

$$
\begin{aligned}
& r(x)=-2 i \sum_{j=1}^{J} e^{2 i k_{j} x} C_{j} N_{j}^{(2)}(x)+\frac{1}{\pi} \int_{-\infty}^{+\infty} \rho(\zeta) e^{2 i \zeta x} N^{(2)}(x, \zeta) d \zeta \\
& q(x)=2 i \sum_{j=1}^{J} e^{-2 i \bar{k}_{j} x} \bar{C}_{j} \bar{N}_{j}^{(1)}(x)+\frac{1}{\pi} \int_{-\infty}^{+\infty} \bar{\rho}(\zeta) e^{-2 i \zeta x} \bar{N}^{(1)}(x, \zeta) d \zeta
\end{aligned}
$$

Inverse Problem-With Symmetry

In each case can simplify prior integral eq with additional symmetry;
When $r(x)=\mp q^{*}(x)$ integral eq reduces to
$N(x, k)=\binom{0}{1}-\sum_{j=1}^{J} \frac{\bar{C}_{j} e^{-2 i \bar{k}_{j} x}}{k-\bar{k}_{j}} \bar{N}_{j}(x)-\frac{1}{2 \pi i} \int_{-\infty}^{+\infty} \frac{\bar{\rho}(\zeta) e^{-2 i \zeta x} \bar{N}(x, \zeta) d \zeta}{\zeta-(k+i 0)}$
with symmetry:

$$
\begin{gathered}
N(x, k)=\binom{N^{(1)}(x, k)}{N^{(2)}(x, k)}, \quad \bar{N}(x, k)=\binom{N^{(2)}\left(x, k^{*}\right)}{\mp N^{(1)}\left(x, k^{*}\right)}^{*} \\
\bar{\rho}(k)=\mp \rho(k)^{*} \quad k \in \mathbb{R}, \quad \bar{k}_{j}=k_{j}^{*}, \quad \bar{C}_{j}=\mp C_{j}^{*}
\end{gathered}
$$

Note: system is closed by evaluating above integral eq at $k=k_{p}, p=1, \ldots, J$

Inverse Problem-With Symmetry-con't

Recall:
$N(x, k)=\binom{0}{1}+\sum_{j=1}^{J} \frac{\bar{C}_{j} e^{-2 i k_{j}^{*} x}}{k-\bar{k}_{j}} \bar{N}_{j}(x)-\frac{1}{2 \pi i} \int_{-\infty}^{+\infty} \frac{\bar{\rho}(\zeta) e^{-2 i \zeta x} \bar{N}(x, \zeta) d \zeta}{\zeta-(k+i 0)}$
When $r(x)=\mp q(x) \in \mathbb{R}$ symmetry is:

$$
\begin{aligned}
N(x, k) & =\binom{N^{(1)}(x, k)}{N^{(2)}(x, k)}, \quad \bar{N}(x, k)=\binom{N^{(2)}(x,-k)}{\mp N^{(1)}(x,-k)} \\
\bar{\rho}(k) & =\mp \rho(-k) \quad k \in \mathbb{R}, \quad \bar{k}_{j}=\left\{k_{j}^{*},-k_{j}\right\}, \quad \bar{C}_{j}=\mp C_{j}
\end{aligned}
$$

Inverse Problem-With Symmetry-con't

The case $r(x)=\mp q^{*}(-x)$ is somewhat more complex since we need efcns and completeness at both $\pm \infty$; in this case:

$$
N(x, k)=\binom{ \pm M^{(2)}\left(-x,-k^{*}\right)^{*}}{M^{(1)}\left(-x,-k^{*}\right)}^{*}, \bar{N}(x, k)=\binom{ \pm \bar{M}^{(2)}\left(-x,-k^{*}\right)}{\bar{M}^{(1)}\left(-x,-k^{*}\right)}^{*}
$$

Inverse Scattering-with Symmetry-con't

Use:
$N(x, k)=\binom{0}{1}+\sum_{\ell=1}^{J} \frac{\bar{C}_{\ell} \bar{N}\left(x, \bar{k}_{\ell}\right) e^{-2 i \bar{k}_{\ell} x}}{k-\bar{k}_{\ell}}-\int_{-\infty}^{\infty} \frac{\bar{\rho}(\xi) e^{-2 i \xi x} \bar{N}(x, \xi) d \xi}{2 \pi i(\xi-(k+i 0))}$
Since $\bar{N}(x, k)$ is related to $\bar{M}^{*}\left(-x, k^{*}\right)$ also use
$\bar{M}(x, k)=\binom{0}{1}+\sum_{\ell=1}^{J} \frac{B_{\ell} M\left(x, k_{\ell}\right) e^{-2 i k_{\ell} x}}{k-k_{\ell}}+\int_{-\infty}^{\infty} \frac{R(\xi) e^{-2 i \xi x} M(x, \xi) d \xi}{2 \pi i(\xi-(k-i 0))}$
And since $M(x, k)$ is related to $N^{*}\left(-x,-k^{*}\right)$ this yields an integral eq for $N(x, k)$ (also have suitable symmetry for scatt data); Trace formula shows that only $b(k)$ and discrete data needed for inversion (add'l symmetries: $\left.R(k)= \pm \rho^{*}\left(-k^{*}\right), B_{\ell}=\mp C_{\ell}^{*}, \ldots\right)$

IST: Next Time Dependence

Soln process via IST:

$$
\begin{array}{ll}
u(x, 0) & \xrightarrow{\text { Direct Scattering }} L: S(k, 0) \\
& \quad \downarrow t: \text { time evolution: M } \\
u(x, t) \stackrel{\text { Inverse Scattering }}{\rightleftarrows} & S(k, t)
\end{array}
$$

IST: 2×2 Time Dependence

The associated M operator determines the evolution of the efcns Taking into account BCs $\phi(x, k, t)$ satisfies

$$
\begin{align*}
\partial_{t} \phi= & \left(\begin{array}{cc}
A-A_{\infty} & B \\
C & -A-A_{\infty}
\end{array}\right) \phi \tag{E}\\
& \text { where } A_{\infty}=\lim _{|x| \rightarrow \infty} A(x, k)
\end{align*}
$$

Using completeness and evaluating $x \rightarrow \infty$:

$$
\phi(x, k, t)=b(k, t) \psi(x, k, t)+a(k, t) \bar{\psi}(x, k, t) \sim\binom{a(t) e^{-i k x}}{b(t) e^{i k x}}
$$

Then as $x \rightarrow \infty$, (E) yields:

$$
\binom{a_{t} e^{-i k x}}{b_{t} e^{i k x}}=\binom{0}{-2 A_{\infty} b e^{i k x}}
$$

IST: 2×2 Time Dependence-con't

Doing the same for $\bar{\phi}(x, k, t)$ find

$$
\begin{gathered}
\partial_{t} a=0, \quad \partial_{t} \bar{a}=0 \\
\partial_{t} b=-2 A_{\infty} b, \quad \partial_{t} \bar{b}=2 A_{\infty} \bar{b}
\end{gathered}
$$

Thus then zero's of $a(k), \bar{a}(k)$ (evalues) k_{j}, \bar{k}_{j} are const in time and for $\rho(k, t)=b(k, t) / a(k, t) ; \quad \bar{\rho}=\bar{b}(k, t) / \bar{a}(k, t)$:

$$
\rho(k, t)=\rho(k, 0) e^{-2 A_{\infty}(k) t}, \quad \bar{\rho}(k, t)=\bar{\rho}(k, 0) e^{2 A_{\infty}(k) t}
$$

Similarly find:

$$
C_{j}(t)=C_{j}(0) e^{-2 A_{\infty}\left(k_{j}\right) t}, \quad \bar{C}_{j}(t)=\bar{C}_{j}(0) e^{2 A_{\infty}\left(\bar{k}_{j}\right) t}
$$

Solitons-Reflectionless Potls

Can obtain pure soliton solutions; for genl $q(x, t), r(x, t)$ systems IST with: $\rho=0, \bar{\rho}=0$ i.e. reflectionless potls; inverse prob reduces to a linear algebraic system:

$$
\begin{aligned}
& \bar{N}_{l}(x, t)=\binom{1}{0}+\sum_{j=1}^{J} \frac{C_{j}(t) e^{2 i k_{j} x} N_{j}(x, t)}{\bar{k}_{l}-k_{j}} \\
& N_{p}(x, t)=\binom{0}{1}+\sum_{m=1}^{J} \frac{\bar{C}_{m}(t) e^{-2 i \bar{k}_{m} x} \bar{N}_{m}(x, t)}{k_{p}-\bar{k}_{m}}
\end{aligned}
$$

with reconstruction:

$$
\begin{aligned}
& r(x, t)=-2 i \sum_{j=1}^{J} e^{2 i k_{j} x} C_{j}(t) N_{j}^{(2)}(x, t) \\
& q(x, t)=2 i \sum_{j=1}^{J} e^{-2 i \bar{k}_{j} x} \bar{C}_{j}(t) \bar{N}_{j}^{(1)}(x, t)
\end{aligned}
$$

One Soliton Solns -With Symmetry

Using the time-dependence of $C_{1}(t)$ and symmetry: $r(x, t)=-q(x, t)^{*}$
General one soliton soln:

$$
q(x)=2 \eta e^{-2 i \xi x+2 i \operatorname{lm} A_{\infty}\left(k_{1}\right) t-i \psi_{0}} \operatorname{sech}\left[2\left(\eta\left(x-x_{0}\right)+\operatorname{Re} A_{\infty}\left(k_{1}\right) t\right)\right]
$$

where

$$
k_{1}=\xi+i \eta, \quad C_{1}(0)=2 \eta e^{2 \eta x_{0}+i\left(\psi_{0}+\pi / 2\right)}
$$

One Soliton Solns With Symmetry-con't

Special one soliton cases:
i) NLS: $r(x, t)=-q^{*}(x, t), k_{1}=\xi+i \eta, A_{\infty}\left(k_{1}\right)=2 i k_{1}^{2}$

$$
q(x, t)=2 \eta e^{-2 i \xi x+4 i\left(\xi^{2}-\eta^{2}\right) t-i \psi_{0}} \operatorname{sech}\left[2 \eta\left(x-4 \xi t-x_{0}\right)\right]
$$

ii) mKdV :

$$
\begin{gathered}
r(x, t)=-q(x, t) \in \mathbb{R}, k_{1}=i \eta, \quad A_{\infty}\left(k_{1}\right)=-4 i k_{1}^{3}=-4 \eta^{3} \\
q(x, t)=2 \eta \operatorname{sech}\left[2 \eta\left(x-4 \eta^{2} t-x_{0}\right)\right]
\end{gathered}
$$

iii) SG: $r(x, t)=-q(x, t) \in \mathbb{R}, k_{1}=i \eta, \quad A_{\infty}\left(k_{1}\right)=\frac{i}{4 k_{1}}=\frac{1}{4 \eta}$

$$
q(x, t)=-\frac{u_{x}}{2}=-2 \eta \operatorname{sech}\left[2 \eta\left(x+\frac{1}{4 \eta} t-x_{0}\right)\right]
$$

or in terms of u, a simple 'kink':

$$
u(x, t)=4 \tan ^{-1} \exp \left[2 \eta\left(x+\frac{1}{4 \eta} t-x_{0}\right)\right]
$$

One Soliton With Symmetry-con't

Nonlocal NLS: $r(x, t)=-q^{*}(-x, t): \quad k_{1}=i \eta, \bar{k}_{1}=-i \bar{\eta}_{1}$
$C_{1}(t)=C_{1}(0) e^{+4 i \eta_{1}^{2} t}=|c| e^{i(\varphi+\pi / 2)} e^{+4 i \eta_{1}^{2} t}, \quad|c|=\eta_{1}+\bar{\eta}_{1}$
$\bar{C}_{1}(t)=\bar{C}_{1}(0) e^{-4 i \bar{\eta}_{1}^{2} t}=|\bar{c}| e^{i(\bar{\varphi}+\pi / 2)} e^{-4 i \bar{\eta}_{1}^{2} t}, \quad|\bar{c}|=\eta_{1}+\bar{\eta}_{1}$
Find a two parameter 'breathing' one soliton solution

$$
q(x, t)=-\frac{2\left(\eta_{1}+\bar{\eta}_{1}\right) e^{i \bar{\varphi}} e^{-4 \bar{\eta}_{1}^{2} t} e^{-2 \bar{\eta}_{1} x}}{1+e^{i(\varphi+\bar{\varphi})} e^{4 i\left(\eta_{1}^{2}-\bar{\eta}_{1}^{2}\right) t} e^{-2\left(\eta_{1}+\bar{\eta}_{1}\right) x}}
$$

Note $|c|=|\bar{c}|=\eta_{1}+\bar{\eta}_{1} \quad$ eigenvalues and 'norming' const related! 1-soliton reduces to NLS 1-soliton when $\eta_{1}=\bar{\eta}_{1}$ and $\varphi+\bar{\varphi}=0$

One Soliton With Symmetry-con't

Recall: two parameter 'breathing' one soliton solution

$$
q(x, t)=-\frac{2\left(\eta_{1}+\bar{\eta}_{1}\right) e^{i \bar{\varphi}} e^{-4 i \bar{\eta}_{1}^{2} t} e^{-2 \bar{\eta}_{1} x}}{1+e^{i(\varphi+\bar{\varphi})} e^{4 i\left(\eta_{1}^{2}-\bar{\eta}_{1}^{2}\right) t} e^{-2\left(\eta_{1}+\bar{\eta}_{1}\right) x}}
$$

Note that there are singularities at $x=0$ with:

$$
\begin{array}{r}
1+e^{i(\varphi+\bar{\varphi})} e^{4 i\left(\eta_{1}^{2}-\bar{\eta}_{1}^{2}\right) t}=0 \quad \text { or at } \\
t=t_{n}=\frac{(2 n+1) \pi-(\varphi+\bar{\varphi})}{4\left(\eta_{1}^{2}-\bar{\eta}_{1}^{2}\right)}, \quad n \in \mathbb{Z}
\end{array}
$$

Singularity disappears when $\eta_{1}=\bar{\eta}_{1}$ and $\varphi+\bar{\varphi} \neq(2 n+1) \pi, n=\mathbb{Z}$

Conserved quantities

$a(k, t)$ is conserved in time; it can be related to the conserved quantities. This follows from the relation

$$
a(k, t)=\lim _{x \rightarrow+\infty} \phi^{(1)}(x, k ; t) e^{i k x}
$$

and the large k asymptotic expn for the efcn: $\phi=\left(\phi^{(1)}, \phi^{(2)}\right)^{T}$ The first few conserved quantities are:

$$
\begin{aligned}
& C_{1}=-\int q(x) r(x) d x, \quad C_{2}=-\int q(x) r_{x}(x) d x \\
& C_{3}=\int\left(q_{x}(x) r_{x}(x)+(q(x) r(x))^{2}\right) d x
\end{aligned}
$$

Similar ideas lead to conservation laws

Conserved quantities-con't

For example, with the reductions $r=\mp q^{*}$ these constants of the motion can be written as

$$
\begin{aligned}
& C_{1}= \pm \int|q(x)|^{2} d x, \quad C_{2}= \pm \int q(x) q_{x}^{*}(x) d x \\
& C_{3}=\int\left(\mp\left|q_{x}(x)\right|^{2}+|q(x)|^{4}\right) d x
\end{aligned}
$$

Inverse $\mathrm{Pb}-$ Triangular Representations: Towards GLM

For general $q(x), r(x)$:
Assuming triangular representations for N, \bar{N}

$$
\begin{aligned}
& N(x, k)=\binom{0}{1}+\int_{x}^{+\infty} K(x, s) e^{i k(s-x)} d s, \quad s>x, \quad \operatorname{Im} k \geq 0 \\
& \bar{N}(x, k)=\binom{1}{0}+\int_{x}^{+\infty} \bar{K}(x, s) e^{-i k(s-x)} d s, \quad s>x, \quad \operatorname{Im} k \leq 0
\end{aligned}
$$

substituting into prior integral eq and taking FTs, GLM eq follow

Inverse Problem-via GLM Eq-con't

For general $q(x), r(x)$ find

$$
\begin{aligned}
& \bar{K}(x, y)+\binom{0}{1} F(x+y)+\int_{x}^{+\infty} K(x, s) F(s+y) d s=0 \\
& K(x, y)+\binom{1}{0} \bar{F}(x+y)+\int_{x}^{+\infty} \bar{K}(x, s) \bar{F}(s+y) d s=0
\end{aligned}
$$

where

$$
\begin{gathered}
F(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \rho(\xi) e^{i \xi x} d \xi-i \sum_{j=1}^{J} C_{j} e^{i k_{j} x} \\
\bar{F}(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \bar{\rho}(\xi) e^{-i \xi x} d \xi+i \sum_{j=1}^{\bar{J}} \bar{C}_{j} e^{-i \bar{k}_{j} x}
\end{gathered}
$$

GLM: Reconstruction - Symmetry

Reconstruction for general $q(x), r(x)$

$$
q(x)=-2 K^{(1)}(x, x), \quad r(x)=-2 \bar{K}^{(2)}(x, x)
$$

Symmetry reduces the GLM eq; with $r(x)=\mp q(x)^{*}$ find

$$
\bar{F}(x)=\mp F^{*}(x), \quad \bar{K}(x, y)=\binom{K^{(2)}(x, y)}{\mp K^{(1)}(x, y)}^{*}
$$

In this case the GLM eq reduces to
$K^{(1)}(x, y)= \pm F^{*}(x+y) \mp \int_{x}^{+\infty} d s \int_{x}^{+\infty} d s^{\prime} K^{(1)}\left(x, s^{\prime}\right) F\left(s+s^{\prime}\right) F^{*}(y+s)$
for $y>x$; When $r(x)=\mp q(x) \in \mathbb{R}$ then $F(x)$ and $K(x, y)$ are $\in \mathbb{R}$

Conclusion and Remarks

- Discussed: in these lectures:
- Compatible linear systems-Lax Pairs-2 $\times 2$ systems
- IST method-nonlinear Fourier transform
- IST associated with KdV
- IST for general $q, r: 2 \times 2$ systems
- q, r systems with symmetry:
- $r(x, t)=\mp q^{*}(x, t):$ NLS
- $r(x, t)=\mp q(x, t) \in \mathbb{R} ; \mathrm{mKdV}$, SG
- $r(x, t)=\mp q^{*}(-x, t)$: nonlocal NLS
- Not discussed- long time asymptotic analysis where solitons and similarity solns/Painleve fcns (e.g. for KdV/mKdV) play important roles

Conclusion and Remarks

- May also carry out IST for many other systems, some physically interesting
- Higher order and more complex $1+1 \mathrm{~d}$ PDE evolution systems: N Wave eq; Boussinesq eq
- Nonlocal eq such as Benjamin-Ono (BO) and Intermediate Long wave eq
- Discrete problems: e.g. Toda lattice, discrete ladder systems, integrable discrete NLS
- $2+1 d$ systems such as Kadomtsev-Petviashvili (KP), Davey-Stewartson, N Wave systems
- In $2+1$ there are some important extensions/new ideas needed for IST: notably DBAR problems: e.g. KPII

References

- References for these lectures
- MJA, B. Prinari and A.D. Trubatch 2004: Discrete and Continuous NL S Systems
- MJA 2011: Nonlinear Dispersive Waves
- Other Refs:

MJA and H. Segur 1981;
MJA and P. Clarkson 1991;
S. Novikov, S. Manakov, L. Pitaevskii, V. Zakharov 1984;
F. Calogero, A. Degasperis 1982,...

